PERFORMANCE-BASED MULTI-OBJECTIVE OPTIMUM DESIGN FOR STEEL STRUCTURES WITH INTELLIGENCE ALGORITHMS
Authors
Abstract:
A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-objective theory is proposed to solve multi-objective optimality problems. The optimality objectives are the roof displacement and structure weight. Two types of structure are analysed in this paper, a truss structure and a framework structure. Performance-based seismic analysis, such as classical and modal pushover analysis, is carried out for the structures. Four optimality algorithms, namely, NSGA-II, MOPSO, MGSO, and MOHPSO, were used for structural optimisation to compare the effectiveness of the algorithms. The calculation results indicate that MOHPSO outperformed the other algorithms in terms of solution stability, universality, and consistency of the distribution of the Pareto front and the ability to consider constraints. The population can converge to the true Pareto front in the latter generations, which indicates that MOHPSO is effective for engineering multi-objective optimality problems.
similar resources
Multi-performance robust optimum design of steel structures
1. Abstract In engineering problems the randomness and uncertainties are inherent, thus the scatter of structural parameters from their nominal ideal values is unavoidable. Robust Design Optimization (RDO) methods primarily seek to minimize the influence of stochastic variations on the mean design, and traditionally rely on rough approximations of the stochastic response about the mean design. ...
full textAN EFFICIENT METHOD FOR OPTIMUM PERFORMANCE-BASED SEISMIC DESIGN OF FUSED BUILDING STRUCTURES
A dual structural fused system consists of replaceable ductile elements (fuses) that sustain major seismic damage and leave the primary structure (PS) virtually undamaged. The seismic performance of a fused structural system is determined by the combined behavior of the individual PS and fuse components. In order to design a feasible and economic structural fuse concept, we need a procedure to ...
full textOPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE FIREFLY AND BAT ALGORITHMS
The main aim of the present paper is to propose efficient multi-objective optimization algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which have been recently developed for single-objective optimization. In order to produce a well distributed Pareto front, some improvement...
full textOPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
full textA COMPARATIVE STUDY FOR THE OPTIMAL DESIGN OF STEEL STRUCTURES USING CSS AND ACSS ALGORITHMS
In this article, an Advanced Charged System Search (ACSS) algorithm is applied for the optimum design of steel structures. ACSS uses the idea of Opposition-based Learning and Levy flight to enhance the optimization abilities of the standard CSS. It also utilizes the information of the position of each charged particle in the subsequent search process to increase the convergence speed. The objec...
full textMy Resources
Journal title
volume 5 issue 1
pages 79- 102
publication date 2015-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023